Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing.
نویسندگان
چکیده
We propose a new portable imaging configuration that can double the field of view (FOV) of existing off-axis interferometric imaging setups, including broadband off-axis interferometers. This configuration is attached at the output port of the off-axis interferometer and optically creates a multiplexed interferogram on the digital camera, which is composed of two off-axis interferograms with straight fringes at orthogonal directions. Each of these interferograms contains a different FOV of the imaged sample. Due to the separation of these two FOVs in the spatial-frequency domain, they can be fully reconstructed separately, while obtaining two complex wavefronts from the sample at once. Since the optically multiplexed off-axis interferogram is recorded by the camera in a single exposure, fast dynamics can be recorded with a doubled imaging area. We used this technique for quantitative phase microscopy of biological samples with extended FOV. We demonstrate attaching the proposed module to a diffractive phase microscopy interferometer, illuminated by a broadband light source. The biological samples used for the experimental demonstrations include microscopic diatom shells, cancer cells, and flowing blood cells.
منابع مشابه
Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization
We present new methods for optimizing the spatial bandwidth capacity in off-axis holography using spatial multiplexing. We use optimal spatial multiplexing of off-axis holograms to fill the entire spatial frequency domain, including the space previously occupied by the intensity of the sample. Our approach enables spatial digital compression of eight offaxis holograms into a single real-valued ...
متن کاملOff-axis interferometric phase microscopy with tripled imaging area.
We present an interferometric approach, referred to as interferometry with tripled-imaging area (ITIA), for tripling the quantitative information that can be collected in a single camera exposure while using off-axis interferometric imaging. ITIA enables optical multiplexing of three off-axis interferograms onto a single camera sensor without changing the imaging-system characteristics, such as...
متن کاملSimultanous two-wavelength phase unwrapping using external module for multiplexing off-axis holography
We present a dual-wavelength external holographic microscopy module for quantitative phase imaging of 3D structures with extended thickness range. This is done by simultaneous acquisition of two off-axis interferograms, each of which at a different wavelength, and generation of a synthetic wavelength, which is larger than the sample optical thickness, allowing twowavelength unwrapping. The simu...
متن کاملDoubling the field of view in off-axis low-coherence interferometric imaging
We present a new interferometric and holographic approach, named interferometry with doubled imaging area (IDIA), with which it is possible to double the camera field of view while performing off-axis interferometric imaging, without changing the imaging parameters, such as the magnification and the resolution. This technique enables quantitative amplitude and phase imaging of wider samples wit...
متن کاملSimultaneous two-wavelength phase unwrapping using an external module for multiplexing off-axis holography.
We present a dual-wavelength external holographic microscopy module for quantitative phase imaging of 3D structures with extended thickness range. This is done by simultaneous acquisition of two off-axis interferograms, each at a different wavelength, and generation of a synthetic wavelength, which is larger than the sample optical thickness, allowing two-wavelength unwrapping. The simultaneous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2015